1.2 SI Units of Length, Mass, and Time

1. (c).
2. (b).
3. (b).

1.3 More about the Metric System

9. (b).
10. (b).
11. (a).
12. That is because 1 nautical mile $=6076 \mathrm{ft}=1.15 \mathrm{mi}$. A nautical mile is larger than a (statute) mile.

1.4 Unit Analysis

22 . No, it only tells if the equation is dimensionally correct.
25. $($ Length $)=($ Length $)+\frac{(\text { Length })}{(\text { Time })} \times($ Time $)=($ Length $)+($ Length $)$.
28. Yes, since $\left[m^{3}\right]=[m]^{3}=\left[m^{3}\right]$.
29. No. $V=4 \pi r^{3} / 3=4 \pi\left(8 r^{3}\right) / 24=4 \pi(2 r)^{3} / 24=\pi d^{3} / 6$. So it should be $V=\pi d^{3} / 6$.
38. (a) Since $E=m c^{2}$, the units of energy $=(\mathrm{kg})(\mathrm{m} / \mathrm{s})^{2}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$.
(b) Yes, because $(\mathrm{kg})\left(\mathrm{m} / \mathrm{s}^{2}\right)(\mathrm{m})=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}(E=m g h)$.

1.5 Unit Conversions

46 . (a) The answer is (4) centimeter, as it is the smallest unit among those listed.
(b) Since $1 \mathrm{ft}=30.5 \mathrm{~cm}, 6.00 \mathrm{ft}=(6.00 \mathrm{ft}) \times \frac{30.5 \mathrm{~cm}}{1 \mathrm{ft}}=183 \mathrm{~cm}$.
47. $40000 \mathrm{mi}=(40000 \mathrm{mi}) \times \frac{1609 \mathrm{~m}}{1 \mathrm{mi}}=64400000 \mathrm{~m}$.

So $\frac{64400000 \mathrm{~m}}{1.75 \mathrm{~m}}=37000000$ times.
51. $0.35 \mathrm{~m} / \mathrm{s}=(0.35 \mathrm{~m} / \mathrm{s}) \times \frac{1 \mathrm{mi}}{1609 \mathrm{~m}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=0.78 \mathrm{mi} / \mathrm{h}$. So in 1.0 h , it travels 0.78 mi .
53. (a) $1 \mathrm{~km} / \mathrm{h}=(1 \mathrm{~km} / \mathrm{h}) \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=0.8 \mathrm{~m} / \mathrm{s}<1 \mathrm{~m} / \mathrm{s}$.
$1 \mathrm{ft} / \mathrm{s}=(1 \mathrm{ft} / \mathrm{s}) \times \frac{1 \mathrm{~m}}{3.28 \mathrm{ft}}=0.30 \mathrm{~m} / \mathrm{s}<1 \mathrm{~m} / \mathrm{s}$.
$1 \mathrm{mi} / \mathrm{h}=(1 \mathrm{mi} / \mathrm{h}) \times \frac{1609 \mathrm{~m}}{1 \mathrm{mi}} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=0.45 \mathrm{~m} / \mathrm{s}<1 \mathrm{~m} / \mathrm{s}$.
So (1) $1 \mathrm{~m} / \mathrm{s}$ represents the greatest speed.
(b) $15.0 \mathrm{~m} / \mathrm{s}=(15.0 \mathrm{~m} / \mathrm{s}) \times \frac{1 \mathrm{mi}}{1609 \mathrm{~m}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=33.6 \mathrm{mi} / \mathrm{h}$.
63. (a) The volume is equal to $V=A h=\pi r^{2} h=\pi(125 \mathrm{~m})^{2}(10 \mathrm{ft})(0.305 \mathrm{~m} / \mathrm{ft})=1.5 \times 10^{5} \mathrm{~m}^{3}$.

(b) The water density of is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

$$
\rho=\frac{m}{V}, \quad m=\rho V=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1.5 \times 10^{5} \mathrm{~m}^{3}\right)=1.5 \times 10^{8} \mathrm{~kg}
$$

(c) One kg is equivalent to $2.2 \mathrm{lb} . \quad 1.5 \times 10^{8} \mathrm{~kg}=\left(1.5 \times 10^{8} \mathrm{~kg}\right) \times \frac{2.2 \mathrm{lb}}{1 \mathrm{~kg}}=3.3 \times 10^{8} \mathrm{lb}$.

1.6 Significant Figures

69. No, there is always one doubtful digit, the last digit.
70. 0.001 m or 1 mm .
71. (a) $12.634+2.1=14.7$.
(b) $13.5-2.134=11.4$.
(c) $\pi(0.25 \mathrm{~m})^{2}=0.20 \mathrm{~m}^{2}$.
(d) $\sqrt{2.37 / 3.5}=0.82$.
72. (a) The answer is (1) zero, since 38 m has zero decimal places.
(b) $46.9 \mathrm{~m}+5.72 \mathrm{~m}-38 \mathrm{~m}=15 \mathrm{~m}$.

1.7 Problem Solving

83. (a).
84. (c).
85. According to Pythagorean theorem, $(1.0 \mathrm{~m})^{2}=(0.50 \mathrm{~m})^{2}+d^{2}$.

So $\quad d=\sqrt{(1.0 m)^{2}-(0.50 m)^{2}}=0.87 \mathrm{~m}$.

96. The 12 -in. pizza is a better buy. A better buy gives you more area (more pepperoni) per dollar, and the area of a pizza depends on the square of the diameter.

For the $9.0 \mathrm{in} .: \frac{\pi(4.5 \mathrm{in} .)^{2}}{\$ 7.95}=8.0 \mathrm{in} .^{2} / \mathrm{dollar} . \quad$ For the $12 \mathrm{in} .: \frac{\pi(6.0 \mathrm{in} .)^{2}}{\$ 13.50}=8.4 \mathrm{in} .^{2} / \mathrm{dollar}$.
102. (a) The number of hairs lost in a month is (65 hairs/day)(30 days) $=1950$ hairs.
(b) 15% bald means 85% with hair. So in one day, the "bald is beautiful" person loses
(0.85)(65 hairs) $=55$ hairs.
In one year, the total is $(365)\left(55\right.$ hairs $=2.0 \times 10^{4}$ hairs.

Comprehensive Exercises

106. (a) Since $d=(13 \mathrm{mi}) \tan 25^{\circ}$ and $\tan 25^{\circ}<1\left(\tan 45^{\circ}=1\right)$, d is (1) less than 13 mi.
(b) $d=(13 \mathrm{mi}) \tan 25^{\circ}=6.1 \mathrm{mi}$.

107. $r_{\mathrm{E}}=1.5 \times 10^{8} \mathrm{~km}$ and $r_{\mathrm{M}}=2.3 \times 10^{8} \mathrm{~km}$.

From the law of cosine, $r_{\mathrm{M}}^{2}=r_{\mathrm{E}}^{2}+r^{2}-2 r r_{\mathrm{E}} \cos 50^{\circ}$
or $\left(2.3 \times 10^{8} \mathrm{~km}\right)^{2}=\left(1.5 \times 10^{8} \mathrm{~km}\right)^{2}+r^{2}-2 r\left(1.5 \times 10^{8} \mathrm{~km}\right) \cos 50^{\circ}$.
Reducing to quadratic equation $r^{2}-\left(1.93 \times 10^{8}\right) r-3.04 \times 10^{16}=0$.
Comparing to the standard quadratic equation $a x^{2}+b x+c=0$,
we have $a=1 ; b=1.93 \times 10^{8}$; and $c=3.04 \times 10^{16}$.
Solving for $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=3.0 \times 10^{8} \mathrm{~km}$.

