1. (b).
2. (d).
3. (b) because
$$f = \frac{1}{T}$$
.
4. (a) because $U = \frac{1}{2}kx^2$.
5. (a) $E = \frac{1}{2}kA^2$, so [our times as large].
(b) $v_{max} = \sqrt{\frac{k}{m}} A$, so [uvice as large].
6. At the equilibrium position the elastic potential energy is zero, and so all the energy is kinetic. Therefore the speed [increases] as it approaches the equilibrium position.
[7]. In one period *T*, the mass goes through a distance equal to 4A. So the time is [Tel] for distance A and [Tel] for 2A.
8. [No], this is not a simple harmonic motion, because the [restoring force does not obey Hooke's law]. Once the ball is in the air, the gravitational force is always constant and downward.
9. In each *T*, it travels $A + A + A + A = [44]$.
10. $f = \frac{1}{T} = \frac{1}{0.60 \text{ s}} = [1.7 \text{ Hz}]$.
12. $T = \frac{1}{f}$, $\mathbf{r} \quad AT = \frac{1}{f_L} - \frac{1}{f_L} = \frac{1}{0.50 \text{ s}} - \frac{1}{0.25 \text{ s}} = -2.0 \text{ s} = [\frac{\text{decrease of } 2.0 \text{ s}]$.
13. $k = \frac{F}{x} = \frac{mg}{x} = \frac{(0.22 \text{ kg})(0.80 \text{ m/s}^2)}{0.000 \text{ m}} = (\frac{11 \text{ N/m}}{1.00 \text{ m}}]$.
14. $v_{max} = \sqrt{\frac{k}{m}} A = \sqrt{\frac{1000 \text{ m}}{0.50 \text{ kg}}} (0.050 \text{ m}) = [0.22 \text{ m/s}]$.
15. The total initial mechanical energy is $E = \frac{1}{2}kA^2$. So $A = \sqrt{\frac{2E}{k}} = \sqrt{\frac{2(0.4374 \text{ J})}{3.03 \text{ 2}N/m}} = 0.1576 \text{ m}$.
16. Therefore the extra stretch is 0.1576 m - 0.0650 m = 0.0926 m = $0.926 \text{ cm}]$.
17. From mechanical energy conservation (choose the initial position as $U_x = 0$).
18. $E = \frac{1}{2}mv_0^2 = mgh + \frac{1}{2}kh^2 = (0.350 \text{ kg})(9.80 \text{ m/s}^3)(0.0450 \text{ m}) + \frac{1}{2}(50.0 \text{ N/m})(0.0450 \text{ m})^2 = 0.2050 \text{ J}$.
19. From conservation of energy (choose the position of the object when the spring is compressed as $U_x = 0$).
21. From necessarcation of energy (choose the position of the object when the spring is compressed as $U_x = 0$).
23. (a) $F = 0$. $\sqrt{\frac{2}{m}} = \sqrt{\frac{2(0.2500 \text{ J})}{3.50 \text{ kg}}} = 1.048 \text{ m/s}^3$.
24. (b) $F = \frac{1}{2}\pi \sqrt{\frac{1}{8}} = 2\pi \sqrt{\frac{9.75 \text{ m}}{9.80 \text{ m/s}^3}} = 1.74 \text{ s} = [1.7 \text{ s}]$.
(b) $F = \frac{1}{2}\pi \sqrt{\frac{1}{8}} = 2\pi \sqrt{\frac{\frac$

53.
$$\omega = \frac{2\pi}{T} = \frac{2\pi}{1.95 \text{ s}} = 3.221 \text{ rad/s}, \quad v_{\text{max}} = \omega \text{A} = (3.221 \text{ rad/s})(0.0865 \text{ m}) = 0.2796 \text{ m/s} = [0.279 \text{ m/s}],$$

$$a_{\text{max}} = \omega^2 \text{A} = (3.221 \text{ rad/s})^2 (0.0865 \text{ m}) = [0.897 \text{ m/s}^2 = (0.0915)g], \quad (g = 9.80 \text{ m/s}^3)$$

$$[54], \quad f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}, \quad \varphi = \frac{f_1}{f_1} = \sqrt{\frac{k_1}{k_1}} = \sqrt{2}.$$
So the answer is [the second system, $f_1 = \sqrt{2} f_1$].

60. (a) Since $T = 2\pi \sqrt{\frac{f}{S}}$, and the length is shorter, T is smaller.
So the clock runs faster or [gainstime].

(b) $\Delta T = 2\pi \sqrt{\frac{9.7500 \text{ m}}{9.80 \text{ m/s}^2}} = 2\pi \sqrt{\frac{9.7400 \text{ m}}{9.80 \text{ m/s}^2}} = 2.32 \times 10^{-3} \text{ s}.$

$$T = 2\pi \sqrt{\frac{9.7500 \text{ m}}{9.80 \text{ m/s}^2} = 1.7382 \text{ s}.$$
In one day, there are 24 h = 86400 s (or 4.9707 \times 10^4 \text{ periods}).
Therefore, the time difference is $(2.32 \times 10^{-3} \text{ s})(4.9707 \times 10^4) = 115 \text{ s} = \frac{1.9 \text{ min}}{1.9 \text{ min}}.$

(c) Yes, because of linear expansion], the length depends on the temperature.

61. (d).

62. (a).

63. (c): A water wave is a combination of transverse and longitudinal.

64. (a) [Transverse and longitudinal]. (b) [Longitudinal]. (c) [Longitudinal].

65. This is a [Longitudinal] wave, because the direction of the wave motion (horizontal across the field) is parallel to the direction of the what plant vibration.

66. This is a $\frac{10.47 \text{ m/s}}{5 \times 10^{14} \text{ Hz}} = (6 \times 10^{-2} \text{ m}).$

77. (a) 90° in latitude covers one quarter of the Farth's circumference. The straight line distance between the locations is $d = \sqrt{\frac{R^2}{5}} + \frac{R}{2} \sqrt{2} R = \sqrt{2} (6.4 \times 10^3 \text{ km}) = 9.05 \times 10^3 \text{ km}.$

 $\Delta t = \frac{d_s}{v_s} - \frac{d_s}{v_p} = \frac{9.05 \times 10^4 \text{ km}}{6.0 \text{ km}/s} = \frac{1.38 \times 10^3 \text{ s}}{1.38 \times 10^3 \text{ s}}.$

81. (d).

84. (Daly waveform) is destroyed. [Energy is not destroyed, but redistributed].

(c) $t = \frac{2(6.4 \times 10^3 \text{ km})}{8.0 \text{ km}/s} = [1.6 \times 10^3 \text{ s}].$ Swaves do not go through the liquid core.

85. [Reflection (this is called echolocation)], because the sound is reflected by the prey.

86. [Sound from diff

$$\begin{array}{ll} \hline 94 \end{bmatrix}. & (a) f_2 = 2f_1 = 2(150 \text{ Hz}) = \boxed{300 \text{ Hz}}. \\ & (b) f_3 = 3f_1 = 3(150 \text{ Hz}) = \boxed{450 \text{ Hz}}. \\ \hline 95. & f_3 = 3f_1, \quad \textcircled{p} \quad f_1 = \frac{f_3}{3} = \frac{450 \text{ Hz}}{3} = \boxed{150 \text{ Hz}}. \\ \hline 99. & f = \frac{v}{\lambda} = \frac{250 \text{ m/s}}{0.80 \text{ m}} = 312.5 \text{ Hz}. \quad f_1 = \frac{v}{2L} = \frac{250 \text{ m/s}}{2(2.0 \text{ m})} = 62.5 \text{ Hz}. \\ \hline 80 \quad n = \frac{f}{f_0} = \frac{312.5 \text{ Hz}}{62.5 \text{ Hz}} = \boxed{5}. \\ \hline 100. & f_n = \frac{n}{2L} \sqrt{\frac{F_T}{\mu}}, \quad \textcircled{p} \quad \frac{F_T'}{F_T} = \frac{(f_1')^2}{(f_1)^2} = \frac{(440 \text{ Hz})^2}{(450 \text{ Hz})^2} = 0.956. \\ \hline 80 \quad F_T' = 0.956(500 \text{ N}) = \boxed{478 \text{ N}}. \end{array}$$