1. (b).
2. (d).
3. (b), because $f=\frac{1}{T}$.
4. (a), because $U=\frac{1}{2} k x^{2}$.
5. (a) $E=\frac{1}{2} k A^{2}$, so four times as large.
(b) $v_{\max }=\sqrt{\frac{k}{m}} A$, so twice as large.
6. At the equilibrium position the elastic potential energy is zero, and so all the energy is kinetic. Therefore the speed increases as it approaches the equilibrium position.
7. In one period T, the mass goes through a distance equal to $4 A$. So the time is $T / 4$ for distance A and $T / 2$ for $2 A$.
8. No , this is not a simple harmonic motion, because the restoring force does not obey Hooke's law. Once the ball is in the air, the gravitational force is always constant and downward.
9. In each T, it travels $A+A+A+A=4 A$.
10. $f=\frac{1}{T}=\frac{1}{0.60 \mathrm{~s}}=1.7 \mathrm{~Hz}$.
11. $T=\frac{1}{f}, \quad \Delta T=\frac{1}{f_{2}}-\frac{1}{f_{1}}=\frac{1}{0.50 \mathrm{~s}}-\frac{1}{0.25 \mathrm{~s}}=-2.0 \mathrm{~s}=$ decrease of 2.0 s .
12. $k=\frac{F}{x}=\frac{m g}{x}=\frac{(0.25 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.060 \mathrm{~m}}=41 \mathrm{~N} / \mathrm{m}$.
13. $v_{\text {max }}=\sqrt{\frac{k}{m}} A=\sqrt{\frac{10 \mathrm{~N} / \mathrm{m}}{0.50 \mathrm{~kg}}}(0.050 \mathrm{~m})=0.22 \mathrm{~m} / \mathrm{s}$.
14. The total initial mechanical energy is
$E=\frac{1}{2} k x_{\mathrm{o}}^{2}+\frac{1}{2} m v_{\mathrm{o}}{ }^{2}=\frac{1}{2}(35.2 \mathrm{~N} / \mathrm{m})(0.0650 \mathrm{~m})^{2}+\frac{1}{2}(0.150 \mathrm{~kg})(2.20 \mathrm{~m} / \mathrm{s})^{2}=0.4374 \mathrm{~J}$.
At the amplitude, the total energy is $E=\frac{1}{2} k A^{2}$. So $A=\sqrt{\frac{2 E}{k}}=\sqrt{\frac{2(0.4374 \mathrm{~J})}{35.2 \mathrm{~N} / \mathrm{m}}}=0.1576 \mathrm{~m}$.
Therefore the extra stretch is $0.1576 \mathrm{~m}-0.0650 \mathrm{~m}=0.0926 \mathrm{~m}=9.26 \mathrm{~cm}$.
15. From mechanical energy conservation (choose the initial position as $U_{\mathrm{g}}=0$),
$E=\frac{1}{2} m v_{\mathrm{o}}{ }^{2}=m g h+\frac{1}{2} k h^{2}=(0.350 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.0450 \mathrm{~m})+\frac{1}{2}(50.0 \mathrm{~N} / \mathrm{m})(0.0450 \mathrm{~m})^{2}=0.2050 \mathrm{~J}$.
So $\quad v_{\mathrm{o}}=\sqrt{\frac{2 E}{m}}=\sqrt{\frac{2(0.2050 \mathrm{~J})}{0.350 \mathrm{~kg}}}=1.08 \mathrm{~m} / \mathrm{s}$.
16. (a) From conservation of energy (choose the position of the object when the spring is compressed as $\left.U_{\mathrm{g}}=0\right): \quad E=\frac{1}{2} k A^{2}=U=m g h, \quad \frac{1}{2}(60.0 \mathrm{~N} / \mathrm{m}) A^{2}=(0.250 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.100 \mathrm{~m}+A)$.
Reducing to: $30.0 A^{2}-2.45 A-0.245=0$. Solving for $A=0.140 \mathrm{~m}$ or -0.0580 m (discarded)
(b) From energy conservation, the object will go to a height of 10.0 cm (original position).
17. (d).
18. (c), $y=A \sin (0)=0$.
19. (b). $y=A \sin [2 \pi(3 T / 4) / T]=A \sin (3 \pi / 2)=-A$.
20.

(a) $T=2 \pi \sqrt{\frac{L}{g}}=2 \pi \sqrt{\frac{0.75 \mathrm{~m}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}=1.74 \mathrm{~s}=1.7 \mathrm{~s}$.
(b) $f=\frac{1}{T}=\frac{1}{1.74 \mathrm{~s}}=0.57 \mathrm{~Hz}$.
38. $T=2 \pi \sqrt{\frac{L}{g}}, \quad L=\frac{T^{2} g}{4 \pi^{2}}=\frac{(1.0 \mathrm{~s})^{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{4 \pi^{2}}=0.25 \mathrm{~m}$.
53. $\omega=\frac{2 \pi}{T}=\frac{2 \pi}{1.95 \mathrm{~s}}=3.221 \mathrm{rad} / \mathrm{s} . \quad v_{\max }=\omega A=(3.221 \mathrm{rad} / \mathrm{s})(0.0865 \mathrm{~m})=0.2796 \mathrm{~m} / \mathrm{s}=0.279 \mathrm{~m} / \mathrm{s}$.
$a_{\max }=\omega^{2} A=(3.221 \mathrm{rad} / \mathrm{s})^{2}(0.0865 \mathrm{~m})=0.897 \mathrm{~m} / \mathrm{s}^{2}=(0.0915) g . \quad\left(g=9.80 \mathrm{~m} / \mathrm{s}^{2}\right)$
54.
$f=\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}, \quad \frac{f_{2}}{f_{1}}=\sqrt{\frac{k_{2}}{k_{1}}}=\sqrt{2}$.
So the answer is the second system, $f_{2}=\sqrt{2} f_{1}$.
60. (a) Since $T=2 \pi \sqrt{\frac{L}{g}}$, and the length is shorter, T is smaller.

So the clock runs faster or gains time.
(b) $\Delta T=2 \pi \sqrt{\frac{0.7500 \mathrm{~m}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}-2 \pi \sqrt{\frac{0.7480 \mathrm{~m}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}=2.32 \times 10^{-3} \mathrm{~s}$.
$T=2 \pi \sqrt{\frac{0.7500 \mathrm{~m}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}=1.7382 \mathrm{~s}$. In one day, there are $24 \mathrm{~h}=86400 \mathrm{~s}$ (or 4.9707×10^{4} periods).
Therefore, the time difference is $\left(2.32 \times 10^{-3} \mathrm{~s}\right)\left(4.9707 \times 10^{4}\right)=115 \mathrm{~s}=1.9 \mathrm{~min}$.
(c) Yes, because of linear expansion, the length depends on the temperature.
61. (d).
62. (a).
63. (c). A water wave is a combination of transverse and longitudinal.
64.
(a) Transverse and longitudinal.
(b) Longitudinal.
(c) Longitudinal.
66. This is a longitudinal wave, because the direction of the wave motion (horizontal across the field) is parallel to the direction of the wheat plant vibration.
69 . $v=\frac{0.75 \mathrm{~m}}{1.6 \mathrm{~s}}=0.47 \mathrm{~m} / \mathrm{s}$
70. $\lambda=\frac{v}{f}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{5 \times 10^{14} \mathrm{~Hz}}=6 \times 10^{-7} \mathrm{~m}$.
77. (a) 90° in latitude covers one quarter of the Earth's circumference. The straight line distance between the locations is $d=\sqrt{R^{2}+R^{2}}=\sqrt{2} R=\sqrt{2}\left(6.4 \times 10^{3} \mathrm{~km}\right)=9.05 \times 10^{3} \mathrm{~km}$.
$\Delta t=\frac{d}{v_{\mathrm{S}}}-\frac{d}{v_{\mathrm{P}}}=\frac{9.05 \times 10^{3} \mathrm{~km}}{6.0 \mathrm{~km} / \mathrm{s}}-\frac{9.05 \times 10^{3} \mathrm{~km}}{8.0 \mathrm{~km} / \mathrm{s}}=3.8 \times 10^{2} \mathrm{~s}$.
(b) $r=R \cos 45^{\circ}$. So the depth under the surface is
$R-r=R\left(1-\cos 45^{\circ}\right)=\left(6.4 \times 10^{3} \mathrm{~km}\right)\left(1-\cos 45^{\circ}\right)=1.9 \times 10^{3} \mathrm{~km}>30 \mathrm{~km}$.
So the answer is yes.

81. (d).
82. (b).
83. (d).
84. Only waveform is destroyed. Energy is not destroyed, but redistributed.
(c) $t=\frac{2\left(6.4 \times 10^{3} \mathrm{~km}\right)}{8.0 \mathrm{~km} / \mathrm{s}}=1.6 \times 10^{3} \mathrm{~s}$. S waves do not go through the liquid core.
85. Reflection (this is called echolocation), because the sound is reflected by the prey.
86. Sound from different instruments would arrive at different times.
87. (d).
88. (b).
89.
(c).

94. (a) $f_{2}=2 f_{1}=2(150 \mathrm{~Hz})=300 \mathrm{~Hz}$.
(b) $f_{3}=3 f_{1}=3(150 \mathrm{~Hz})=450 \mathrm{~Hz}$.
95. $f_{3}=3 f_{1}, f_{1}=\frac{f_{3}}{3}=\frac{450 \mathrm{~Hz}}{3}=150 \mathrm{~Hz}$.
99. $f=\frac{v}{\lambda}=\frac{250 \mathrm{~m} / \mathrm{s}}{0.80 \mathrm{~m}}=312.5 \mathrm{~Hz} . \quad f_{1}=\frac{v}{2 L}=\frac{250 \mathrm{~m} / \mathrm{s}}{2(2.0 \mathrm{~m})}=62.5 \mathrm{~Hz}$.

So $n=\frac{f}{f_{\mathrm{o}}}=\frac{312.5 \mathrm{~Hz}}{62.5 \mathrm{~Hz}}=5$.
100.
$f_{\mathrm{n}}=\frac{n}{2 L} \sqrt{\frac{F_{\mathrm{T}}}{\mu}}, \quad \frac{F_{\mathrm{T}}^{\prime}}{F_{\mathrm{T}}}=\frac{\left(f_{1}^{\prime}\right)^{2}}{\left(f_{1}\right)^{2}}=\frac{(440 \mathrm{~Hz})^{2}}{(450 \mathrm{~Hz})^{2}}=0.956$.
So $\quad F_{\mathrm{T}}^{\prime}=0.956(500 \mathrm{~N})=478 \mathrm{~N}$.

