In this chapter, the following convenient calculation of equivalent resistance for two resistors in parallel is

28.	$R_2, R_3, \text{ and } R_4 \text{ are in series:}$ $R_s = 20 \ \Omega + 5.0 \ \Omega + 5.0 \ \Omega = 30 \ \Omega.$
	$R_{\rm s}$ and $R_{\rm 1}$ are in parallel: $R_{\rm p} = \frac{(30 \ \Omega)(10 \ \Omega)}{30 \ \Omega + 10 \ \Omega} = \boxed{7.5 \ \Omega}.$
36.	(a) $I_1 = \frac{V}{R_1} = \frac{6.0 \text{ V}}{6.0 \Omega} = \boxed{1.0 \text{ A}}$ R_2 and R_3 are in series. $R_s = 4.0 \Omega + 6.0 \Omega = 10 \Omega$.
	So $I_2 = I_3 = \frac{6.0 \text{ V}}{10 \Omega} = \boxed{0.60 \text{ A}}, I_4 = \frac{6.0 \text{ V}}{10 \Omega} = \boxed{0.60 \text{ A}}.$
	(b) $P_1 = I_1^2 R_1 = (1.0 \text{ A})^2 (6.0 \Omega) = 6.0 \text{ W}, P_2 = (0.60 \text{ A})^2 (4.0 \Omega) = 1.4 \text{ W},$
	$P_3 = (0.60 \text{ A})^2 (6.0 \Omega) = \boxed{2.2 \text{ W}}, P_4 = (0.60 \text{ A})^2 (10 \Omega) = \boxed{3.6 \text{ W}}.$
	(c) $P_{\text{sum}} = 6.0 \text{ W} + 1.44 \text{ W} + 2.16 \text{ W} + 3.6 \text{ W} = 13 \text{ W}.$
	From Exercise 18.27, $P_{\text{total}} = \frac{(6.0 \text{ V})^2}{2.7 \Omega} = 13 \text{ W}.$ Therefore $P_{\text{sum}} = P_{\text{total}} = 13 \text{ W}.$
43.	(a).
44.	(a).
45.	(d).
46.	(b).
55.	Around the loop in a counterclockwise direction, $20 \text{ V} - I(20 \Omega) - 10 \text{ V} - I(10 \Omega) = 0$,
	so $I = I_1 = I_2 = 0.33$ A. Therefore $I_1 = 0.33$ A (left) and $I_2 = 0.33$ A (right).
60.	(a). The voltage across the resistor decreases exponentially when a capacitor is discharged.
61.	(c). The current in the circuit decreases exponentially when a capacitor is charged.
62.	(c). $\tau = RC$.
63.	(b). $\tau = RC$, independent of charges.
71.	(a) $\tau = RC$, $\mathbf{\mathscr{P}} = \frac{\tau}{C} = \frac{1.50 \text{ s}}{1.00 \times 10^{-6} \text{ F}} = 1.50 \times 10^{6} \Omega = \boxed{1.50 \text{ M}\Omega}.$
	(b) $V_{\rm C} = V_{\rm o} \left(1 - e^{-t/\tau} \right) = (12.0 \text{ V}) \left(1 - e^{-3} \right) = \boxed{11.4 \text{ V}}.$
76.	(a).
77.	(b).
/8.	$V \qquad 6.0 \text{ V}$
86.	An ammeter is connected in series. $I = \frac{1}{R + R_a} = \frac{10 \Omega + 1.0 \times 10^{-3} \Omega}{10 \Omega + 1.0 \times 10^{-3} \Omega} = [0.59994 \text{ A}].$
87.	A voltmeter is connected in parallel. $I = \frac{V}{R_v} = \frac{6.0 \text{ V}}{30 \times 10^3 \Omega} = 2.0 \times 10^{-4} \text{ A} = \boxed{0.20 \text{ mA}}.$
90.	(a).
91.	(c).
92.	The fuse and the switch are on the ground side of the circuit. An open switch or blown fuse

2. The fuse and the switch are on the ground side of the circuit. An open switch or blown fuse would potentially leave the motor at a high voltage if it were touched by a person.

- 93. No, a high voltage can produce high harmful current, even if resistance is high, because current is caused by voltage (potential difference).
- 94. A conductor has very low resistance. The resistance of the wire between the feet is very small; so

the voltage between the feet is small. Therefore the current through the bird is also small.

107. (a)
$$V_{\rm C} = V_{\rm o} e^{-t/\tau}$$
, **a** 20.0 V = (10 000 V) $e^{-t/\tau}$

$$e^{-t/\tau} = 0.00200$$
 so $\frac{t}{\tau} = 6.215$. Therefore $\tau = \frac{t}{6.215} = \frac{75.1 \times 10^{-3} \text{ s}}{6.215} = 12.08 \text{ ms} = 12.1 \text{ ms}$.
(b) $\tau = RC$, $\mathbf{\mathcal{P}} = \frac{\tau}{C} = \frac{12.08 \times 10^{-3} \text{ s}}{10.0 \times 10^{-6} \text{ F}} = 1.208 \text{ k}\Omega = 1.21 \text{ k}\Omega$.

2

(c) Because $U_{\rm C} = \frac{1}{2} CV^2$, loosing 90% of its energy means the remaining energy is 10% = 0.10.

The remaining voltage is then $\sqrt{0.10} = 0.316 (31.6\%)$ of its maximum voltage.

$$0.316 = e^{-t/\tau}$$
, $r = -\ln(0.316) = 1.15$.

Therefore $t = 1.15 \tau = 1.15(12.08 \text{ ms}) = 13.9 \text{ ms}$.