1. (c).
2. (b).
3. (d).
4. The angle of reflection will [never] be smaller than the angle of incidence. They are always equal,
according to the law of reflection.
7. Since
$$\theta_i = \theta_i$$
 the angle between the themas is $35^\circ + 35^\circ = 70^\circ$.
8. $\theta_i = \theta_i = 32^\circ$ from the normal. So the angle between the surface and the beam is $90^\circ - \theta_i = 58^\circ$.
10). (a) If the angle of incidence is β_i the angle of reflection is also β_i .
So the angle formed by the left mirror and the right mirror is $\alpha_i \beta_i$.
Then the angle between the right mirror and the light incident on the right
mirror is $180^\circ - (10^\circ - \theta_i) + i\theta = 00^\circ + \beta - \alpha$.
Therefore the angle of incidence on the right mirror is $\alpha_i - \beta_i$.
(b) For $\alpha = 60^\circ$ and $\beta = 40^\circ$, the angle of reflection off the right mirror is $\alpha - \beta$
 $= 60^\circ - 40^\circ = [20^\circ]$.
11. According to the law of reflection,
 $\beta = 180^\circ - [\alpha + (90^\circ - \theta_i)] = 90^\circ - \alpha + \theta_i$.
So the angle of reflection from the second mirror is $\theta_2 = 90^\circ - \beta = \alpha - \theta_1$.
(a) $\theta_2 = 70^\circ - 35^\circ = [35^\circ]$.
(b) $\theta_2 = 115^\circ - 60^\circ = [55^\circ]$.
16. (b) because n_1 sin θ_1 , n_1 sin θ_2 . When $n_1 > n_2$, $\theta_i < \theta_2$, so the refracted ray is
berta away from the normal.
(d).
18. Both (a) and (c) must be satisfied.
19. It is because: $[fight speed depends on medium]$. For example, light speed is different in air than in water.
Due to the speed difference, light changes direction when entering a different medium at an angle of
incidence that is not zero.
20. [Yes], wavelength changes. [No], frequency does not change. [Yes], speed changes since $v = Af$.
4. $n = \frac{c}{v} = \frac{3.00 \times 10^3 \text{ m/s}}{2.13 \times 10^3 \text{ m/s}} = [1.40]$.
30. $\theta_1 = \sin \frac{n_1}{n_1}$, $\mathbf{m} = \frac{n_1}{\sin \frac{1}{n_1}} = \frac{1}{(1.40) \sin \frac{30^\circ}{1}} = 0.73$. So $\theta_1 = 47^\circ$.
Therefore the angle of reflection is also $\frac{47^\circ}{1}$, according to the law of reflection.
31. The frequency does not change and is skill $(6.5 \times 10^{+1} \text{ Hz})$.
 $\lambda_i = \frac{p}{r} = \frac{c}{n_i} = \frac{3.00 \times 10^3 \text{ m/s}}{1.33} = [\frac{2.4 \text{ m}}{1.33} = [\frac$

43.
$$\theta_{c} = \sin^{-1} \frac{n_{z}}{n_{1}} = \sin^{-1} \frac{1}{1.33} = 49^{\circ}$$
. The 50° angle will be totally reflected, and the 40° angle will refract through.
Therefore light is $\left[\frac{8em \text{ for } 40^{\circ} \text{ but not for } 50^{\circ}\right]$.
48. Use the result of Exercise 37b. $d' = \frac{d}{n} = \frac{2.5 \text{ cm}}{1.52} = \left[\frac{1.6 \text{ cm}}{1.62}\right]$.
49. $n_{1} \sin \theta_{1} = n_{2} \sin \theta_{2}$, $\boldsymbol{\varphi} = n_{2} = \frac{n_{1} \sin \theta_{2}}{\sin \theta_{2}} = \frac{(1.33) \sin 45^{\circ}}{\sin 35^{\circ}} = 1.64$.
53. $\theta_{2} = \tan^{-1} \frac{0.50 \text{ m}}{n_{1}} = \tan^{-1} 0.667 = 33.7^{\circ}$.
 $n_{1} \sin \theta_{1} = n_{2} \sin \theta_{2}$, $\boldsymbol{\varphi} = \frac{(1.33) \sin 33.7^{\circ}}{1} = 0.738$.
Therefore $\theta_{1} = 47.5^{\circ}$.
Thus $d = (1.8 \text{ m}) \tan \theta_{1} = (1.8 \text{ m}) \tan 47.5^{\circ} = 20 \text{ m}$.
56. (d).
57. (b).
58. (b).
64. (a) Blue will experience more refraction, because its index of refraction differs more than for red, compared with the index of refraction of air. According to Snell's law, blue will have a smaller angle of refraction or deviates more from the angle of incidence.
55. $n_{1} \sin \theta_{1} = n_{R} \sin \theta_{R} = n_{B} \sin \theta_{B}$, $\boldsymbol{\varphi} = \sin \theta_{R} = \frac{n_{1} \sin \theta_{1}}{n_{R_{R}}} = \frac{(1) \sin 30^{\circ}}{(1.4925)} = 0.33501$.
S0 $\theta_{R} = 19.573^{\circ}$. $\Delta \theta = \theta_{R} - \theta_{B}$, $\boldsymbol{\varphi} = \theta_{R} - \Delta \theta = 19.573^{\circ} - (0.00131 \text{ rad}) \times \frac{180^{\circ}}{\pi \text{ rad}} = 19.498^{\circ}$.
Therefore $n_{R} = \frac{(1) \sin 30^{\circ}}{\sin 18.489^{\circ}} = [\frac{1.409}{1}$.
65. We calculate the critical angle for both colors.
 $\theta_{R} = \sin^{-1} \frac{1}{n_{R}} = \sin^{-1} \frac{1}{1.515} = 41.30^{\circ}$, and $\theta_{R} = \sin^{-1} \frac{1}{1.523} = 41.04^{\circ}$.
Because the angle of incidence is 41.15° , (only red) will be refracted out into the air. Blue is internally reflected.
711. (a) $\theta_{c} = \sin^{-1} \frac{n_{R}}{n_{1}} + wher $n_{2} = 1$ (air). Red light will have a smaller index of refraction, because its critical angle is greater. Also because $v = \frac{c}{n}$, red light will have a smaller index of refraction, because its critical angle is greater. Also because $v = \frac{c}{n}$, red light will have a higher speed of light than blue light. For the same time interval red light will rave $\left(\frac{1}{n$$