33. The ground speed is the magnitude of the horizontal component of velocity.
$v_{\mathrm{g}}=(120 \mathrm{mi} / \mathrm{h}) \cos 20^{\circ}=113 \mathrm{mi} / \mathrm{h}$.
34.

(a) $A=\sqrt{A_{\mathrm{x}}^{2}+A_{\mathrm{y}}^{2}} \quad$ and $\quad \theta=\tan ^{-1}\left(\frac{A_{\mathrm{y}}}{A_{\mathrm{x}}}\right) . \quad$ If A_{x} and A_{y} doubles,
$A^{\prime}=\sqrt{\left(2 A_{\mathrm{x}}\right)^{2}+\left(2 A_{\mathrm{y}}\right)^{2}}=\sqrt{4\left(A_{\mathrm{x}}\right)^{2}+4\left(A_{\mathrm{y}}\right)^{2}}=2 \sqrt{A_{\mathrm{x}}^{2}+A_{\mathrm{y}}^{2}}=2 A$,
$\theta^{\prime}=\tan ^{-1}\left(\frac{2 A_{\mathrm{y}}}{2 A_{\mathrm{x}}}\right)=\tan ^{-1}\left(\frac{A_{\mathrm{y}}}{A_{\mathrm{x}}}\right)=\theta$.
So the answer is (1) vector's magnitude doubles, but direction remains unchanged.
(b) The magnitude triples, but the direction remains unchanged. So it is 30 m at 45°.

40

$$
\begin{array}{ll}
A_{\mathrm{x}}=5.0 \mathrm{~m} / \mathrm{s}, & A_{\mathrm{y}}=0 . \\
B_{\mathrm{x}}=(10 \mathrm{~m} / \mathrm{s}) \cos 60^{\circ}=5.0 \mathrm{~m} / \mathrm{s}, & B_{\mathrm{y}}=(10.0 \mathrm{~m} / \mathrm{s}) \sin 60^{\circ}=8.66 \mathrm{~m} / \mathrm{s} . \\
C_{\mathrm{x}}=-(15 \mathrm{~m} / \mathrm{s}) \cos 30^{\circ}=-13.0 \mathrm{~m} / \mathrm{s}, & C_{\mathrm{y}}=(15 \mathrm{~m} / \mathrm{s}) \sin 30^{\circ}=7.5 \mathrm{~m} / \mathrm{s} .
\end{array}
$$

$(A+B+C)_{\mathrm{x}}=5.0 \mathrm{~m} / \mathrm{s}+5.0 \mathrm{~m} / \mathrm{s}+(-13.0 \mathrm{~m} / \mathrm{s})=-3.0 \mathrm{~m} / \mathrm{s}$,
$(A+B+C)_{\mathrm{y}}=0+8.66 \mathrm{~m} / \mathrm{s}+7.5 \mathrm{~m} / \mathrm{s}=16 \mathrm{~m} / \mathrm{s}$.
$A+B+C=\sqrt{(-3.0 \mathrm{~m} / \mathrm{s})^{2}+(16 \mathrm{~m} / \mathrm{s})^{2}}=16 \mathrm{~m} / \mathrm{s}$,
$\theta=\tan ^{-1}\left(\frac{16 \mathrm{~m} / \mathrm{s}}{3.0 \mathrm{~m} / \mathrm{s}}\right)=79^{\circ}$ above the $-x$-axis.
41. From Exercise 3.40:
$(A-B-C)_{\mathrm{x}}=5.0 \mathrm{~m} / \mathrm{s}-5.0 \mathrm{~m} / \mathrm{s}-(-13.0 \mathrm{~m} / \mathrm{s})=13 \mathrm{~m} / \mathrm{s}$,
$(A-B-C)_{\mathrm{y}}=0-8.66 \mathrm{~m} / \mathrm{s}-7.5 \mathrm{~m} / \mathrm{s}=-16 \mathrm{~m} / \mathrm{s}$.
So $\quad A-B-C=\sqrt{(13 \mathrm{~m} / \mathrm{s})^{2}+(-16 \mathrm{~m} / \mathrm{s})^{2}}=21 \mathrm{~m} / \mathrm{s}$,

$$
\theta=\tan ^{-1}\left(\frac{16 \mathrm{~m} / \mathrm{s}}{13 \mathrm{~m} / \mathrm{s}}\right)=51^{\circ} \text { below the }+x \text {-axis }
$$

52. (a) Since $F_{2 \mathrm{x}}=F_{1 \mathrm{x}}$, or $F_{2} \cos 45^{\circ}=F_{1} \cos 45^{\circ}$. The answer is (2) $F_{2}=F_{1}$.
(b) $F_{1 \mathrm{y}}+F_{2 \mathrm{y}}=F_{1} \sin 45^{\circ}+F_{2} \sin 45^{\circ}=2 F_{1} \sin 45^{\circ}=2(100 \mathrm{~N}) \sin 45^{\circ}=141 \mathrm{~N}$.
$\Sigma F_{\mathrm{y}}=141 \mathrm{~N}-100 \mathrm{~N}-F_{3}=0$. So $F_{3}=41 \mathrm{~N}$ down
53. (a) $(10.5 \mathrm{~m}) \cos 45^{\circ}=7.42 \mathrm{~m}, \quad(10.5 \mathrm{~m}) \cos 40^{\circ}=8.04 \mathrm{~m}, \quad(10.5 \mathrm{~m}) \sin 40^{\circ}=6.75 \mathrm{~m}$.

The desired displacement is $\overrightarrow{\mathbf{d}}=(-7.42 \mathrm{~m}) \hat{\mathbf{x}}+(7.42 \mathrm{~m}) \hat{\mathbf{y}}$.
The first shot is $\overrightarrow{\mathbf{d}}_{1}=(-6.75 \mathrm{~m}) \hat{\mathbf{x}}+(8.04 \mathrm{~m}) \hat{\mathbf{y}}$.
The second shot should be $\overrightarrow{\mathbf{d}}_{2}=\overrightarrow{\mathbf{d}}-\overrightarrow{\mathbf{d}}_{1}=(-0.67 \mathrm{~m}) \hat{\mathbf{x}}+(-0.62 \mathrm{~m}) \hat{\mathbf{y}}$.
$\theta=\tan ^{-1}\left(\frac{0.62}{0.67}\right)=42.8^{\circ}$ south of west
(b) $d_{2}=\sqrt{(-0.67 \mathrm{~m})^{2}+(-0.62 \mathrm{~m})^{2}}=0.91 \mathrm{~m}$.
(c) The reason is due to the fact that the ball might travel in a curve.

62. Given: $v_{\mathrm{xo}}=1.5 \times 10^{6} \mathrm{~m} / \mathrm{s}, \quad v_{\mathrm{yo}}=0, \quad x=0.35 \mathrm{~m}$. Find: y. (Take both x_{o} and y_{o} as 0 .)
First find the time of flight from the horizontal motion.
$x=x_{\mathrm{o}}+v_{\mathrm{xo}} t$, $\quad t=\frac{x}{v_{\mathrm{xo}}}=\frac{0.35 \mathrm{~m}}{1.5 \times 10^{6} \mathrm{~m} / \mathrm{s}}=2.33 \times 10^{-7} \mathrm{~s}$.
$y=y_{\mathrm{o}}+v_{\mathrm{yo}} t-\frac{1}{2} g t^{2}=0+0-\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right)\left(2.33 \times 10^{-7} \mathrm{~s}\right)^{2}=-2.7 \times 10^{-13} \mathrm{~m}$.
So it falls $2.7 \times 10^{-13} \mathrm{~m}$. This is a very small distance. Therefore the answer is no , the designer need not worry about gravitational effects.
67. (a) (2) Ball B collides with ball A because they have the same horizontal velocity.
(b) $y=y_{\mathrm{o}}+v_{\mathrm{yo}} t-\frac{1}{2} g t^{2}=0-\frac{1}{2} g t^{2}, \quad t=\sqrt{-\frac{2 y}{g}}=\sqrt{-\frac{2(-1.00 \mathrm{~m})}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}=0.452 \mathrm{~s}$. (Take y_{o} as 0 .) $x=x_{\mathrm{o}}+v_{\mathrm{xo}} t=0+(0.25 \mathrm{~m} / \mathrm{s})(0.452 \mathrm{~s})=0.11 \mathrm{~m}$ for both. (Take both x_{o} as 0 .)
70. $v_{\mathrm{xo}}=v_{\mathrm{o}} \cos \theta=(15.0 \mathrm{~m} / \mathrm{s}) \cos 15.0^{\circ}=14.5 \mathrm{~m} / \mathrm{s}$, $v_{\mathrm{yo}}=v_{\mathrm{o}} \sin \theta=(15.0 \mathrm{~m} / \mathrm{s}) \sin 15.0^{\circ}=3.88 \mathrm{~m} / \mathrm{s}$.
(Take both x_{0} and y_{0} as 0 .)
(a) At maximum height, $v_{\mathrm{y}}=0 . \quad v_{\mathrm{y}}^{2}=v_{\mathrm{yo}}^{2}-2 g\left(y-y_{\mathrm{o}}\right)$, $\quad y=\frac{(3.88 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.768 \mathrm{~m}$.
(b) At impact, $y=0 . \quad y=y_{\mathrm{o}}+v_{\mathrm{yo}} t-\frac{1}{2} g t^{2}, \quad t=\frac{5.176 \mathrm{~m} / \mathrm{s}}{\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.792 \mathrm{~s}$.

So $\quad R=x=x_{\mathrm{o}}+v_{\mathrm{xo}} t=0+(14.5 \mathrm{~m} / \mathrm{s})(0.792 \mathrm{~s})=11.5 \mathrm{~m}$.
(c) Kick the ball harder to increase v_{0} and/or increase the angle so it is as close to 45° as possible.
76. At the maximum height, $y=R / 2$ and $v_{y}=0$. (Take $y_{\mathrm{o}}=0$.)

Use the result from Exercise 3.71, $R=\frac{v_{\mathrm{o}}^{2} \sin 2 \theta}{g}$.
$v_{\mathrm{y}}^{2}=v_{\mathrm{yo}}^{2}-2 g y, \quad 0=v_{\mathrm{o}}^{2} \sin ^{2} \theta-2 g y_{\text {max }}=v_{\mathrm{o}}^{2} \sin ^{2} \theta-2 g \frac{v_{\mathrm{o}}^{2} \sin 2 \theta}{g}=v_{\mathrm{o}}^{2} \sin ^{2} \theta-v_{\mathrm{o}}^{2} \sin 2 \theta$.
So $\quad v_{0}^{2} \sin ^{2} \theta=v_{\mathrm{o}}^{2} \sin 2 \theta \quad$ or $\quad \sin ^{2} \theta=2 \sin \theta \cos \theta$.
Therefore $\sin \theta=2 \cos \theta$ or $\tan \theta=2$. Thus $\theta=63^{\circ}$.
84. (Take both x_{o} and y_{o} as 0.)
$x=x_{\mathrm{o}}+v_{\mathrm{xo}} t=\left(v_{\mathrm{o}} \cos \theta\right) t, \quad t=\frac{x}{v_{\mathrm{xo}}}=\frac{x}{v_{\mathrm{o}} \cos \theta}$,

$y=y_{\mathrm{o}}+v_{\mathrm{yo}} t-\frac{1}{2} g t^{2}=v_{\mathrm{o}} \sin \theta \times \frac{x}{v_{\mathrm{o}} \cos \theta}-\frac{1}{2} g\left(\frac{x}{v_{\mathrm{o}} \cos \theta}\right)^{2}=x$
6.02 m
$\tan \theta-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \theta}$.
So $\quad v_{0}=\frac{x}{\cos \theta} \sqrt{\frac{g}{2(x \tan \theta-y)}}=\frac{6.02 \mathrm{~m}}{\cos 25^{\circ}} \sqrt{\frac{9.80 \mathrm{~m} / \mathrm{s}^{2}}{2\left[(6.02 \mathrm{~m}) \tan 25^{\circ}-1.0 \mathrm{~m}\right]}}=10.9 \mathrm{~m} / \mathrm{s}$.
98. Use the following subscripts: $\mathrm{b}=\mathrm{boat}, \mathrm{c}=$ current, and $\mathrm{w}=$ water.

Upstream: $v_{\mathrm{bc}}=7.5 \mathrm{~m} / \mathrm{s}, \quad v_{\mathrm{cw}}=-5.0 \mathrm{~m} / \mathrm{s}$.
$v_{\mathrm{bw}}=v_{\mathrm{bc}}+v_{\mathrm{cw}}=7.5 \mathrm{~m} / \mathrm{s}+(-5.0 \mathrm{~m} / \mathrm{s})=2.5 \mathrm{~m} / \mathrm{s}$.
So $\quad t_{\mathrm{up}}=\frac{500 \mathrm{~m}}{2.5 \mathrm{~m} / \mathrm{s}}=200 \mathrm{~s}$.
Downstream: $\quad v_{\mathrm{bc}}=7.5 \mathrm{~m} / \mathrm{s}, \quad v_{\mathrm{cw}}=5.0 \mathrm{~m} / \mathrm{s} . \quad v_{\mathrm{bw}}=v_{\mathrm{bc}}+v_{\mathrm{cw}}=7.5 \mathrm{~m} / \mathrm{s}+5.0 \mathrm{~m} / \mathrm{s}=12.5 \mathrm{~m} / \mathrm{s}$.
So $\quad t_{\text {down }}=\frac{500 \mathrm{~m}}{12.5 \mathrm{~m} / \mathrm{s}}=40 \mathrm{~s}$.

Therefore $t=200 \mathrm{~s}+40 \mathrm{~s}=240 \mathrm{~s}=4.0 \mathrm{~min}$.
102. (a) The relative velocity of the rain to that of the car is $\overrightarrow{\mathbf{v}}_{\mathrm{rc}}=\overrightarrow{\mathbf{v}}_{\mathrm{rg}}-\overrightarrow{\mathbf{v}}_{\mathrm{cg}}$, where the subscripts r , c, and g stand for rain, car, and ground, respectively, and the symbol $\overrightarrow{\mathbf{v}}_{\mathrm{cg}}$ denotes the relative velocity of the car to the ground, etc. It is clear in the vector diagram that \mathbf{v}_{rc} is not vertical, but at an angle.
Since $\tan \theta=v_{\mathrm{cg}} / v_{\mathrm{rg}}$, the angle θ also increases as the velocity of the car increases.
(b) $v_{\mathrm{cg}}=v_{\mathrm{rg}} \tan \theta=(10 \mathrm{~m} / \mathrm{s}) \tan 25^{\circ}=4.7 \mathrm{~m} / \mathrm{s}$.
111. (a) $6000 \mathrm{~km} / \mathrm{h}=167 \mathrm{~m} / \mathrm{s}$.
$v_{\mathrm{xo}}=v_{\mathrm{o}} \cos 75^{\circ}=(166.7 \mathrm{~m} / \mathrm{s}) \cos 75^{\circ}=43.1 \mathrm{~m} / \mathrm{s}, v_{\mathrm{yo}}=v_{\mathrm{o}} \sin 75^{\circ}=(166.7 \mathrm{~m} / \mathrm{s}) \sin 75^{\circ}=161 \mathrm{~m} / \mathrm{s}$. $y=y_{\mathrm{o}}+v_{\mathrm{yo}} t-\frac{1}{2} g t^{2}, \quad 500 \mathrm{~m}=4000 \mathrm{~m}+(161 \mathrm{~m} / \mathrm{s}) t-\left(4.90 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}$.
Reducing to quadratic equation $4.9 t^{2}-161 t-3500=0$.
Solving, $t=47.8 \mathrm{~s}$ and -14.9 s .
(b) At the maximum height $v_{y}=0$.
$v_{\mathrm{y}}^{2}=v_{\mathrm{yo}}^{2}-2 g\left(y-y_{\mathrm{o}}\right), \quad y=y_{\max }=y_{\mathrm{o}}+\frac{v_{\mathrm{yo}}^{2}}{2 g}=4000 \mathrm{~m}+\frac{(161 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=5.32 \times 10^{3} \mathrm{~m}$.
(c) $v_{\mathrm{x}}=v_{\mathrm{xo}}=43.1 \mathrm{~m} / \mathrm{s}$,
$v_{\mathrm{y}}=v_{\mathrm{yo}}-g t=161 \mathrm{~m} / \mathrm{s}-\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(47.8 \mathrm{~s})=-307 \mathrm{~m} / \mathrm{s}$.
So $\quad v_{y}=\sqrt{(43.1 \mathrm{~m} / \mathrm{s})^{2}+(-307 \mathrm{~m} / \mathrm{s})^{2}}=310 \mathrm{~m} / \mathrm{s}$.
112. $\overrightarrow{\mathbf{v}}_{\mathrm{A}}=(35 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}$,
$\overrightarrow{\mathbf{v}}_{\mathrm{B}}=\left[(30 \mathrm{~m} / \mathrm{s}) \cos 10^{\circ}\right] \hat{\mathbf{x}}+\left[(30 \mathrm{~m} / \mathrm{s}) \sin 10^{\circ}\right] \hat{\mathbf{y}}=(29.5 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}+(5.21 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$.
The velocity of car B relative to car A is
$\overrightarrow{\mathbf{v}}_{\mathrm{B}}-\overrightarrow{\mathbf{v}}_{\mathrm{A}}=(29.5 \mathrm{~m} / \mathrm{s}-35 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}+(5.21 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}=(-5.5 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}+(5.2 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$.
(b) Time for car A to get to point $\otimes: \quad t_{\mathrm{A}}=\frac{d_{\mathrm{A}}}{v_{\mathrm{A}}}=\frac{350 \mathrm{~m}}{35 \mathrm{~m} / \mathrm{s}}=10 \mathrm{~s}$.

During that time car B will travel a distance of $d_{\mathrm{B}}=v_{\mathrm{B}} t=(30 \mathrm{~m} / \mathrm{s})(10 \mathrm{~s})=300 \mathrm{~m}$.
Since the angled ramp is longer than the straight ramp, car B will not be at point \otimes when car A is there. Therefore they do not collide at point \otimes.
(c) The length of the $10^{\circ} \mathrm{ramp}$ is $d_{\mathrm{B}}=\frac{350 \mathrm{~m}}{\cos 10^{\circ}}=355 \mathrm{~m}$.

So the time for car B to reach point \otimes is $\quad t_{\mathrm{B}}=\frac{d_{\mathrm{B}}}{v_{\mathrm{B}}}=\frac{355 \mathrm{~m}}{30 \mathrm{~m} / \mathrm{s}}=11.8 \mathrm{~s}$.
During the 11.8 s , car A will travel a total distance of $(35 \mathrm{~m} / \mathrm{s})(11.8 \mathrm{~s})=413 \mathrm{~m}$.
Therefore, when car B reaches point \otimes, car A will travel an extra distance of $413 \mathrm{~m}-350 \mathrm{~m}=63 \mathrm{~m}$.
Thus, there is no collision.
Thus car A is 63 m ahead.

