13. $F_{\text {net }}=m a, m=\frac{F_{\text {net }}}{a}=\frac{4.0 \mathrm{~N}}{10 \mathrm{~m} / \mathrm{s}^{2}}=0.40 \mathrm{~kg}$.
14. In the horizontal direction, $F_{\text {net }}=+30.0 \mathrm{~N}+(-35.0 \mathrm{~N})=-5.0 \mathrm{~N}$.
$F_{\text {net }}=m a, \quad a=\frac{F_{\text {net }}}{m}=\frac{-5.0 \mathrm{~N}}{5.0 \mathrm{~kg}}=-1.0 \mathrm{~m} / \mathrm{s}^{2}$.
The negative sign indicates that the acceleration is in the $-x$-axis.
15. $\quad \overrightarrow{\mathbf{F}}_{1}=(5.5 \mathrm{~N})\left[\left(\cos 30^{\circ}\right) \hat{\mathbf{x}}-\left(\sin 30^{\circ}\right) \hat{\mathbf{y}}\right]=(4.76 \mathrm{~N}) \hat{\mathbf{x}}+(-2.75 \mathrm{~N}) \hat{\mathbf{y}}$,
$\overrightarrow{\mathbf{F}}_{2}=(3.5 \mathrm{~N})\left[\left(\cos 37^{\circ}\right) \hat{\mathbf{x}}+\left(\sin 37^{\circ}\right) \hat{\mathbf{y}}\right]=(2.80 \mathrm{~N}) \hat{\mathbf{x}}+(2.11 \mathrm{~N}) \hat{\mathbf{y}}$.
$\Sigma \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3}=0, \quad \overrightarrow{\mathbf{F}}_{3}=-\left(\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}\right)=(-7.6 \mathrm{~N}) \hat{\mathbf{x}}+(0.64 \mathrm{~N}) \hat{\mathbf{y}}$.
16. (a) For the net force to be zero, the unknown ($3^{\text {rd }}$ force) must be in (2) the second quadrant. The x-component of the unknown force must be due west and the y-component of the unknown force must be due north.
(b) From $\Sigma \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3}=0$,
$\overrightarrow{\mathbf{F}}_{3}=0-\left(\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}\right)=-\overrightarrow{\mathbf{F}}_{1}-\overrightarrow{\mathbf{F}}_{2}$
$=[-(150 \mathrm{lb})-(30.0 \mathrm{lb})] \hat{\mathbf{x}}-(-40.0 \mathrm{lb}) \hat{\mathbf{y}}=(-180 \mathrm{~N}) \hat{\mathbf{x}}+(40.0 \mathrm{~N}) \hat{\mathbf{y}}$,
or $\quad F_{3}=\sqrt{(-180 \mathrm{~N})^{2}+(40.0 \mathrm{~N})^{2}}=184 \mathrm{~N}, \quad \theta=\tan ^{-1}\left(\frac{40.0 \mathrm{~N}}{-180 \mathrm{~N}}\right)=12.5^{\circ}$ above the $-x$-axis.
17. The friction force is opposite the horizontal force. $a=\frac{F_{\text {net }}}{m}=\frac{300 \mathrm{~N}-120 \mathrm{~N}}{75 \mathrm{~kg}}=2.40 \mathrm{~m} / \mathrm{s}^{2}$.
18. First find the acceleration from dynamics. The acceleration is in the horizontal direction.
$\Sigma F_{\mathrm{x}}=-\left(1.30 \times 10^{4} \mathrm{~N}\right) \cos 30^{\circ}=-1.126 \times 10^{4} \mathrm{~N}$.
$\Sigma F_{\mathrm{x}}=m a, \quad a=\frac{\Sigma F_{\mathrm{x}}}{m}=\frac{-1.126 \times 10^{4} \mathrm{~N}}{2000 \mathrm{~kg}}=-5.629 \mathrm{~m} / \mathrm{s}^{2}$.
$v_{\mathrm{o}}=45.0 \mathrm{~m} / \mathrm{s} 0, \quad v=0($ stop $), \quad a=-5.629 \mathrm{~m} / \mathrm{s}^{2}$.
$v^{2}=v_{\mathrm{o}}^{2}+2 a\left(x-x_{\mathrm{o}}\right), \quad x-x_{\mathrm{o}}=\frac{v^{2}-v_{\mathrm{o}}^{2}}{2 a}=\frac{0^{2}-(45.0 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-5.629 \mathrm{~m} / \mathrm{s}^{2}\right)}=180 \mathrm{~m}<200 \mathrm{~m}$.
Lois is saved.
19. (a) For Jane: $T=m a=(50 \mathrm{~kg})\left(0.92 \mathrm{~m} / \mathrm{s}^{2}\right)=46 \mathrm{~N}$.

The force on John is also 46 N (Newton's $3^{\text {rd }}$ law).
$a_{\text {John }}=\frac{46 \mathrm{~N}}{60 \mathrm{~kg}}=0.77 \mathrm{~m} / \mathrm{s}^{2}$ toward Jane.
(b) $x_{\text {John }}=\frac{1}{2} a_{\text {John }} t^{2}, \quad x_{\text {Jane }}=\frac{1}{2} a_{\text {Jane }} t^{2}$.

So $\quad \frac{x_{\text {Jane }}}{x_{\text {John }}}=\frac{a_{\text {Jane }}}{a_{\text {John }}}=\frac{0.92}{0.767}=1.2$.
Also $\quad x_{\text {John }}+x_{\text {Jane }}=10 \mathrm{~m}, \quad$ or $\quad x_{\text {John }}+1.2 x_{\text {John }}=10 \mathrm{~m}$.
Therefore $\quad x_{\text {John }}=4.5 \mathrm{~m}$ from John's original position.
55. (a) The answer is (4) the pull of the rope on the girl. The pull of the rope on the girl is the reaction of the pull of the girl on the rope.
(b) $\Sigma F_{\mathrm{y}}=T-w=T-m g=m a$,
so $\quad T=m(a+g)=(25.0 \mathrm{~kg})\left(0.75 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=264 \mathrm{~N}$.
65. (a) $\overrightarrow{\mathbf{F}}_{1}=(400 \mathrm{~N}) \hat{\mathbf{x}}, \quad \overrightarrow{\mathbf{F}}_{2}=(-300 \mathrm{~N}) \hat{\mathbf{x}}$,
$\overrightarrow{\mathbf{F}}_{3}=(50 \mathrm{~N})\left[\left(\cos 60^{\circ}\right) \hat{\mathbf{x}}+\left(\sin 60^{\circ}\right) \hat{\mathbf{y}}\right]=(25.0 \mathrm{~N}) \hat{\mathbf{x}}+(43.3 \mathrm{~N}) \hat{\mathbf{y}}$.
$\Sigma \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3}=(125 \mathrm{~N}) \hat{\mathbf{x}}+(43.3 \mathrm{~N}) \hat{\mathbf{y}}$.
So $\quad \overrightarrow{\mathbf{a}}=\frac{\sum \overrightarrow{\mathbf{F}}}{m}=\frac{(125 \mathrm{~N}) \hat{\mathbf{x}}+(43.3 \mathrm{~N}) \hat{\mathbf{y}}}{75 \mathrm{~kg}}=\left(1.67 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathbf{x}}+\left(0.577 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathbf{y}}$.
$a=\sqrt{\left(1.67 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(0.577 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}}=1.7 \mathrm{~m} / \mathrm{s}^{2}$,
$\theta=\tan ^{-1}\left(\frac{0.577}{1.67}\right)=19^{\circ}$ north of east.
(b) Now the wind and current force is opposite that of Part (a).

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}_{3}=-[(25.0 \mathrm{~N}) \hat{\mathbf{x}}+(43.3 \mathrm{~N}) \hat{\mathbf{y}}] . \quad \Sigma \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3}=(75 \mathrm{~N}) \hat{\mathbf{x}}+(-43.3 \mathrm{~N}) \hat{\mathbf{y}} . \\
& \overrightarrow{\mathbf{a}}=\left(1.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathbf{x}}+\left(-0.577 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathbf{y}} . \\
& a=\sqrt{\left(1.00 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(-0.577 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}}=1.2 \mathrm{~m} / \mathrm{s}^{2} . \\
& \theta=\tan ^{-1}\left(\frac{-0.577}{1.00}\right)=30^{\circ} \text { south of east. }
\end{aligned}
$$

73. (a) The angle the rope makes with the horizontal, θ, depends on both the tree separation and sag. $\quad \Sigma F_{\mathrm{y}}=2 T \sin \theta-m g=0, \quad T=\frac{m g}{2 \sin \theta}$.

So the tension depends on (3) both the tree separation and sag.

(b) $\theta=\tan ^{-1}\left(\frac{0.20 \mathrm{~m}}{5.0 \mathrm{~m}}\right)=2.29^{\circ} . \quad T=\frac{(5.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{2 \sin 2.29^{\circ}}=6.1 \times 10^{2} \mathrm{~N}$.

80 . (a) Since the two objects accelerate together, they have the same acceleration, a. Also according to Newton's third law, the tension on m_{1} (up) is the same as the tension on m_{2} (up).

$$
\begin{equation*}
\text { For } m_{1}: \quad \quad \Sigma F_{1}=T-m_{1} g=m_{1} a \tag{1}
\end{equation*}
$$

For $m_{2}: \quad \Sigma F_{2}=m_{2} g-T=m_{2} a$.
Equation (1) + Equation (2) gives $\left(m_{2}-m_{1}\right) g=\left(m_{1}+m_{2}\right) a$,
so $\quad a=\frac{\left(m_{2}-m_{1}\right) g}{m_{1}+m_{2}}=\frac{(0.80 \mathrm{~kg}-0.55 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.55 \mathrm{~kg}+0.80 \mathrm{~kg}}=1.8 \mathrm{~m} / \mathrm{s}^{2}$.

(b) From Equation (1), $T=m_{1}(a+g)=(0.55 \mathrm{~kg})\left(1.8 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=6.4 \mathrm{~N}$.
83. (a) According to Newton's $3^{\text {rd }}$ law, the tension force at the ends of the string are the same because the string is massless. Since m_{2} is accelerating up, $T>w_{2}$. Since F is responsible for accelerating both m_{1} and m_{2} upward, $F>T$. Therefore the answer is (1) $T>w_{2}$ and $T<F$.
(b) For $m_{1}: \Sigma F_{1}=F-T-m_{1} \mathrm{~g}=m_{1} a$

For $m_{2}: \Sigma F_{2}=T-m_{2} \mathrm{~g}=m_{2} a$
Equation (1) + Equation (2) gives
$F-m_{1} g-m_{2} g=m_{1} a+m_{2} a=\left(m_{1}+m_{2}\right) a$.
$F=\left(m_{1}+m_{2}\right)(a+g)=(50.0 \mathrm{~kg}+100 \mathrm{~kg})\left(1.50 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=1.70 \times 10^{3} \mathrm{~N}$.
(c) From Equation (2), $T=m_{2}(a+g)=(100 \mathrm{~kg})\left(1.50 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=1.13 \times 10^{3} \mathrm{~N}$.

100. (a) First find acceleration from dynamics and use μ_{k} from Table 4.1.
$\Sigma F_{\mathrm{x}}=-f_{\mathrm{k}}=-\mu_{\mathrm{k}} m g=m a, \quad \mu_{\mathrm{k}}=-\frac{a}{g}$.
So $\quad a=-\mu_{\mathrm{k}} g=-0.85\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=-8.33 \mathrm{~m} / \mathrm{s}^{2}$,
and $\quad v_{\mathrm{o}}=90 \mathrm{~km} / \mathrm{h}=25 \mathrm{~m} / \mathrm{s}, \quad v=0 . \quad\left(\right.$ Take $\left.x_{\mathrm{o}}=0.\right)$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right), \quad x=\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{0-(25 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-8.33 \mathrm{~m} / \mathrm{s}^{2}\right)}=38 \mathrm{~m}$.

(b) $a=-0.60\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=-5.88 \mathrm{~m} / \mathrm{s}^{2} . \quad$ So $\quad x=\frac{0-(25 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-5.88 \mathrm{~m} / \mathrm{s}^{2}\right)}=53 \mathrm{~m}$.
101. Use the result of $4.100(\mathrm{a}), \mu_{\mathrm{k}}=-\frac{a}{g}$.
$a=\frac{0-(5.0 \mathrm{~m} / \mathrm{s})^{2}}{2(20 \mathrm{~m})}=-0.625 \mathrm{~m} / \mathrm{s}^{2}, \quad$ so $\quad \mu_{\mathrm{k}}=-\frac{-0.625 \mathrm{~m} / \mathrm{s}^{2}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}=0.064$.
111. Use the diagram in Exercise 4.110 but with f_{k} replacing f_{s}.

For $m_{1}: \Sigma F_{1}=T_{1}-m_{1} g=m_{1} a$,
For $m_{3}: \Sigma F_{3}=T_{2}-T_{1}-f_{\mathrm{k}}=m_{3} a$,
(2), where $f_{\mathrm{k}}=\mu_{\mathrm{k}} N_{3}=\mu_{\mathrm{k}} m_{3} g$.

For $m_{2}: \quad \Sigma F_{2}=m_{2} g-T_{2}=m_{2} a$,
Equation (1) + Equation (2) + Equation (3) gives $\quad\left(m_{2}-m_{1}-\mu_{\mathrm{k}} m_{3}\right) g=\left(m_{1}+m_{2}+m_{3}\right) a$,
so $\quad a=\frac{\left(m_{2}-m_{1}-\mu_{\mathrm{k}} m_{3}\right) g}{m_{1}+m_{2}+m_{3}}$.
(a) For constant speed, $\quad a=0 . \quad$ So $\quad m_{3}=\frac{m_{2}-m_{1}}{\mu_{\mathrm{k}}}=\frac{0.250 \mathrm{~kg}-0.150 \mathrm{~kg}}{0.560}=0.179 \mathrm{~kg}$.
(b) $a=\frac{0.250 \mathrm{~kg}-0.150 \mathrm{~kg}-(0.560)(0.100 \mathrm{~kg})}{0.150 \mathrm{~kg}+0.250 \mathrm{~kg}+0.100 \mathrm{~kg}}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=0.862 \mathrm{~m} / \mathrm{s}^{2}$.
117. (a) If m is accelerating upward, M is accelerating down the incline.

For $M: \quad \Sigma F_{\mathrm{y}}=N-M g \cos \theta=0$,
so $\quad N=M g \cos \theta=(5.00 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 30^{\circ}=42.4 \mathrm{~N}$.
$f_{\mathrm{k}}=\mu_{\mathrm{k}} N=(0.100)(42.4 \mathrm{~N})=4.24 \mathrm{~N}$.
$\Sigma F_{\mathrm{x}}=M g \sin \theta-T-f_{\mathrm{k}}=M a, \quad$ so
$T=M g \sin \theta-f_{\mathrm{k}}-M a$
$=(5.00 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 30^{\circ}-4.24 \mathrm{~N}-(5.00 \mathrm{~kg})\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right)$

$=10.3 \mathrm{~N}$.
(b) For $m: \quad \Sigma F_{\mathrm{x}}=T-m g=m a, \quad m=\frac{T}{g+a}=\frac{10.3 \mathrm{~N}}{9.80 \mathrm{~m} / \mathrm{s}^{2}+2.00 \mathrm{~m} / \mathrm{s}^{2}}=0.954 \mathrm{~kg}$.

