35. (a) A water barometer should have (1) a higher height than the mercury barometer due to its low density.
(b) $p_{\mathrm{a}}=\rho g h, \quad h=\frac{1.01 \times 10^{5} \mathrm{~Pa}}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=10 \mathrm{~m}$.
36. (a) $p_{\mathrm{w}}=\rho g h=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(10 \mathrm{~m})=9.8 \times 10^{4} \mathrm{~Pa}$.
(b) $p=p_{\mathrm{o}}+p_{\mathrm{w}}=1.01 \times 10^{5} \mathrm{~Pa}+9.8 \times 10^{4} \mathrm{~Pa}=2.0 \times 10^{5} \mathrm{~Pa}$.
37. $p=\frac{F}{2 A}$, where A is the contact area of each tire.

So $\quad A=\frac{F}{p}=\frac{m g}{2 p}=\frac{(90.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{2\left(690 \times 10^{3} \mathrm{~Pa}\right)}=6.39 \times 10^{-4} \mathrm{~m}^{2}$.
36. (a) $p_{\mathrm{w}}=\rho g h=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(10 \mathrm{~m})=9.8 \times 10^{4} \mathrm{~Pa}$.
(b) $p=p_{\mathrm{o}}+p_{\mathrm{w}}=1.01 \times 10^{5} \mathrm{~Pa}+9.8 \times 10^{4} \mathrm{~Pa}=2.0 \times 10^{5} \mathrm{~Pa}$.
39. $p=\frac{F}{2 A}$, where A is the contact area of each tire.

So $\quad A=\frac{F}{p}=\frac{m g}{2 p}=\frac{(90.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{2\left(690 \times 10^{3} \mathrm{~Pa}\right)}=6.39 \times 10^{-4} \mathrm{~m}^{2}$.
44. The pressure at the bottom is the standard atmospheric pressure. The pressure at the top needs to be lower by an amount that is equal to the pressure caused by a $15.0-\mathrm{cm}$ column of water.
$p_{\text {top }}=p_{\mathrm{o}}-\rho g h=1.013 \times 10^{5} \mathrm{~Pa}-\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.150 \mathrm{~m})=9.98 \times 10^{4} \mathrm{~Pa}$.
46. (a) $w=m g=\rho V g=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(5.0 \times 10^{-5} \mathrm{~m}^{2}\right)(12 \mathrm{~m})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=5.9 \mathrm{~N}$.
(b) $p_{\mathrm{w}}=\rho g h=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m})=1.2 \times 10^{5} \mathrm{~Pa}$.
(c) $F=p A=\left(1.2 \times 10^{5} \mathrm{~Pa}\right)\left(0.20 \mathrm{~m}^{2}\right)=2.4 \times 10^{4} \mathrm{~N}$.

50. First calculate the velocity of the water when it comes out of the spout. Water falls a distance of h, so its velocity out of the sprout is (from energy conservation)
$v=\sqrt{2 g h}=\sqrt{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.45 \mathrm{~m})}=2.97 \mathrm{~m} / \mathrm{s}$, which is the initial velocity for the rise.
From kinematics, the maximum height is $\frac{v^{2}}{2 g}=\frac{\left(2.97 \mathrm{~m} / \mathrm{s}^{2}\right.}{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.45 \mathrm{~m}$.
53. (a) From Pascal's principle, $p_{\mathrm{i}}=p_{\mathrm{o}}$, $\frac{F_{\mathrm{i}}}{A_{\mathrm{i}}}=\frac{F_{\mathrm{o}}}{A_{\mathrm{o}}}$.

So $\quad F_{\mathrm{i}}=\frac{A_{\mathrm{i}}}{A_{\mathrm{o}}} F_{\mathrm{o}}=\frac{4.00 \mathrm{~cm}^{2}}{250 \mathrm{~cm}^{2}} \times(3500 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=548.8 \mathrm{~N}=549 \mathrm{~N}$.
(b) $p=\frac{F}{A}=\frac{548.8 \mathrm{~N}}{4.00 \times 10^{-4} \mathrm{~m}^{2}}=1.37 \times 10^{6} \mathrm{~Pa}$.
66. (a) He did it by water displacement.
(b) $\rho=\frac{m}{V}=\frac{0.750 \mathrm{~kg}}{3.980 \times 10^{-5} \mathrm{~m}^{3}}=18.8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}<\rho_{\mathrm{g}}=19.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. No.
67. When floating, $w=F_{\mathrm{b}}=\rho_{\mathrm{f}} g V_{\mathrm{f}}$.
$m=\frac{w}{g}=\rho_{\mathrm{f}} V=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(4.5 \mathrm{~m})(2.0 \mathrm{~m})(0.29 \mathrm{~m})=2.6 \times 10^{3} \mathrm{~kg}$.
69. First find the volume of the crown with buoyancy. $\quad F_{\mathrm{b}}=(0.80 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)-7.30 \mathrm{~N}=0.54 \mathrm{~N}$.

Since $F_{\mathrm{b}}=\rho_{\mathrm{f}} g V_{\mathrm{f}}, \quad V=\frac{F_{\mathrm{b}}}{\rho_{\mathrm{f}} g}=\frac{0.54 \mathrm{~N}}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=5.51 \times 10^{-5} \mathrm{~m}^{3}$.
So the density is $\rho=\frac{m}{V}=\frac{0.80 \mathrm{~kg}}{5.51 \times 10^{-5} \mathrm{~m}^{3}}=14.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}<\rho_{\mathrm{g}}=19.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. No.
70. The tension in the scale (scale reading) is the difference between the weight and buoyant force.
$T=m g-F_{\mathrm{b}}=\rho g V-\rho_{\mathrm{f}} g V=\left(\rho-\rho_{\mathrm{f}}\right) g V=\left(7800 \mathrm{~kg} / \mathrm{m}^{3}-1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.30 \mathrm{~m})^{3}=1.8 \times 10^{3} \mathrm{~N}$.
73. $m=\rho V=\left(200 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.100 \mathrm{~m})^{3}=0.200 \mathrm{~kg} . F_{\mathrm{b}}=7.84 \mathrm{~N}+m g=7.84 \mathrm{~N}+(0.200 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=9.80 \mathrm{~N}$.
$F_{\mathrm{b}}=\rho_{\mathrm{f}} g V_{\mathrm{f}}$, $\quad \rho_{\mathrm{f}}=\frac{F_{\mathrm{b}}}{g V}=\frac{9.80 \mathrm{~N}}{\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.100 \mathrm{~m})^{3}}=1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}($ Probably H2O) .
76. (a) For the girl to float, $\quad w=m g=F_{\mathrm{b}}=\rho_{\mathrm{f}} g V_{\mathrm{f}}=\rho_{\mathrm{f}} g(0.90 \mathrm{~V})$.

So $\quad \rho_{\mathrm{m}}=\frac{m}{V}=(0.97) \rho_{\mathrm{f}}=(0.97)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)=9.7 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}$.
(b) $\rho_{\mathrm{w}}=\frac{w}{V}=\rho_{\mathrm{m}} g=\left(970 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=9.5 \times 10^{3} \mathrm{~N} / \mathrm{m}^{3}$.
87. $A_{1} v_{1}=A_{2} v_{2}, \quad v_{2}=\frac{A_{1}}{A_{2}} v_{1}=\frac{\pi(0.20 \mathrm{~m})^{2}}{\pi(0.35 \mathrm{~m})^{2}} \times(3.0 \mathrm{~m} / \mathrm{s})=0.98 \mathrm{~m} / \mathrm{s}$.
90. $\quad A_{1} v_{1}=A_{2} v_{2}$, $v_{2}=\frac{A_{1}}{A_{2}} v_{1}=\frac{\pi(1.00 \mathrm{~cm})^{2}}{\pi(0.800 \mathrm{~cm})^{2}} \times(0.265 \mathrm{~m} / \mathrm{s})=0.414 \mathrm{~m} / \mathrm{s}$.

So the increase is $\Delta v=0.414 \mathrm{~m} / \mathrm{s}-0.265 \mathrm{~m} / \mathrm{s}=0.149 \mathrm{~m} / \mathrm{s}$.
91. From Bernoulli's principle, $\quad p_{1}+\frac{1}{2} \rho v_{1}{ }^{2}+=p_{2}+\frac{1}{2} \rho v_{2}{ }^{2}$,
$\Delta p=\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right)=\frac{1}{2}\left(1.06 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left[(0.414 \mathrm{~m} / \mathrm{s})^{2}-(0.265 \mathrm{~m} / \mathrm{s})^{2}\right]=53.6 \mathrm{~Pa}$.
94. (a) Use Bernoulli's principle, $\quad p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$.

Here $\quad p_{1}=p_{2}=p_{\mathrm{a}}, \quad$ and $\quad v_{1} \approx 0$ (at the top of the water surface), so $v_{2}=\sqrt{2 g \Delta y}$.
For the $40-\mathrm{cm}$ high (upper) hole, $\quad v_{\mathrm{u}}=\sqrt{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.05 \mathrm{~m})}=0.990 \mathrm{~m} / \mathrm{s}=0.99 \mathrm{~m} / \mathrm{s}$;
for the $30-\mathrm{cm}$ high (middle) hole, $\quad v_{\mathrm{m}}=\sqrt{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.15 \mathrm{~m})}=1.71 \mathrm{~m} / \mathrm{s}=1.7 \mathrm{~m} / \mathrm{s}$;
for the $20-\mathrm{cm}$ high (bottom) hole, $\quad v_{\mathrm{b}}=\sqrt{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.25 \mathrm{~m})}=2.21 \mathrm{~m} / \mathrm{s}=2.2 \mathrm{~m} / \mathrm{s}$;
for the $10-\mathrm{cm}$ high (bottom) hole, $\quad v_{\mathrm{b}}=\sqrt{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.35 \mathrm{~m})}=2.62 \mathrm{~m} / \mathrm{s}=2.6 \mathrm{~m} / \mathrm{s}$.
(b) They are all horizontal projectile motions. First find the time of flight from the vertical motion.
$y=\frac{1}{2} g t^{2}, \quad t=\sqrt{\frac{2 y}{g}} . \quad$ So the range is $x=v_{\mathrm{x}} t=v_{\mathrm{x}} \sqrt{\frac{2 y}{g}} . \quad$ Therefore
$x_{1}=(0.990 \mathrm{~m} / \mathrm{s}) \sqrt{\frac{2(0.40 \mathrm{~m})}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}=0.28 \mathrm{~m} ; \quad x_{2}=(1.71 \mathrm{~m} / \mathrm{s}) \sqrt{\frac{2(0.30 \mathrm{~m})}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}=0.42 \mathrm{~m}$;
$x_{3}=(2.21 \mathrm{~m} / \mathrm{s}) \sqrt{\frac{2(0.20 \mathrm{~m})}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}=0.45 \mathrm{~m} ; \quad x_{4}=(2.62 \mathrm{~m} / \mathrm{s}) \sqrt{\frac{2(0.10 \mathrm{~m})}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}=0.37 \mathrm{~m}$.
So the greatest range 0.45 m is from $y=20 \mathrm{~cm}$.
96. Use Bernoulli's principle, $p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$.

With $v_{1}=0$, it becomes $\frac{1}{2} \rho v_{2}^{2}=p_{1}-p_{2}+\rho g\left(y_{1}-y_{2}\right)$.
$v_{2}=\sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho}+2 g\left(y_{1}-y_{2}\right)}=\sqrt{\frac{2\left(1.40 \times 10^{5} \mathrm{~Pa}\right)}{1000 \mathrm{~kg} / \mathrm{m}^{3}}+2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(-10.0 \mathrm{~m})}=9.165 \mathrm{~m} / \mathrm{s}$.
$Q=A_{2} v_{2}=\pi(0.0500 \mathrm{~m})^{2}(9.165 \mathrm{~m} / \mathrm{s})=0.0719 \mathrm{~m}^{3} / \mathrm{s}=71.9 \mathrm{~L} / \mathrm{s}$.
107. $T=w=\rho_{\mathrm{r}} g V_{\mathrm{r}}=2.94 \mathrm{~N}, \quad V_{\mathrm{r}}=\frac{T}{\rho_{\mathrm{r}} g}=\frac{2.94 \mathrm{~N}}{\left(2500 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=1.20 \times 10^{-4} \mathrm{~m}^{3}$.

The spring force is $F_{\mathrm{s}}=k x=(200 \mathrm{~N} / \mathrm{m})(0.0100 \mathrm{~m})=2.00 \mathrm{~N}$.
The buoyant force is $F_{\mathrm{b}}=\rho g V=w-F_{\mathrm{s}}=2.94 \mathrm{~N}-2.00 \mathrm{~N}=0.94 \mathrm{~N}$.
So $\rho=\frac{F_{\mathrm{b}}}{g V}=\frac{0.94 \mathrm{~N}}{\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\left(1.20 \times 10^{-4} \mathrm{~m}^{3}\right)}=8.0 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}$.

