Blocks at the Bottom of Liquids-Buoyant Force ${ }^{106}$

Shown below are eight containers that have the same volume of the same liquid in them. Blocks of various solids are at the bottom of the containers. The blocks vary in both size and mass. Specific values for the masses labeled as M_{b} and volumes labeled as V_{b} of the blocks are given in each figure.

Rank these situations, from greatest to least, on the basis of buoyant force on the blocks. That is, put first the situation that has the greatest buoyant force on the block, and put last the situation that has the lowest buoyant force on the block.

A

$M_{b}=75 \mathrm{~g}$
$V_{b}=25 \mathrm{~cm}^{3}$
$M_{b}=120 \mathrm{~g}$
$V_{b}=100 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& M_{b}=100 \mathrm{~g} \\
& V_{b}=50 \mathrm{~cm}^{3}
\end{aligned}
$$

C

$M_{b}=100 \mathrm{~g}$
$V_{b}=40 \mathrm{~cm}^{3}$

D

H

$M_{b}=60 \mathrm{~g}$
$V_{b}=25 \mathrm{~cm}^{3}$

Greatest 1 \qquad 2 _ 3 \qquad
\qquad
\qquad
\qquad
\qquad Leas

Or, all of the blocks have the same buoyant force. \qquad
Or, the buoyant force is zero on all these blocks. \qquad
Please carefully explain your reasoning.

How sure were you of your ranking? (circle one)

Basically Guessed
Sure
Very Sure
1
2
3
4
5
${ }^{106}$ C. Hieggelke
Ranking Task Exercises in Physics

