Three Linear Electric Charges-Electric Force ${ }^{127}$

Given below are arrangements of three fixed electric charges. In each figure, a point labeled P is also identified. All of the charges are the same size charge, q, but they can be either positive or negative as indicated. The charges and point P all lie on a straight line. The distances between adjacent items, either between two charges or between a charge and point P, are all the same. There are no other charges in this region. A test charge, $+Q$, is placed at point P .

Rank these arrangements from greatest to least on the basis of the strength (magnitude) of the electric force on the test charge, $+Q$, at P .
$\mathbf{A} \oplus \oplus \quad$ P
B $\oplus \quad$ P
$\mathbf{D} \quad \oplus \quad \oplus \quad$ P $\quad \Theta$
E

F $\quad \oplus \quad \Theta$

Greatest 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad
\qquad Least

Or, all of these arrangements exert the same magnitude force on the $+Q$ test charge. \qquad Or, all of these arrangements will exert zero force on the $+Q$ test charge.

Please carefully explain your reasoning.

How sure were you of your ranking? (circle one)

Basically Guessed									
1	2	3	4	5	6	7	8	9	10

[^0]
[^0]: ${ }^{127}$ T. O'Kuma

