## Uniform Electric Field—Potential Energy of a Negative Charge ${ }^{155}$

We have a large region of space that has a uniform electric field in the $+x$ direction $(\Rightarrow)$. At the point $(0,0) \mathrm{m}$, the electric field is $30 \mathbf{i} \mathrm{~N} / \mathrm{C}$ and the electric potential is 100 volts.

Rank the points specified below on the basis of the electric potential energy of a single negative charge of -5 C that may be placed at these points.

A: $(0,6) \mathrm{m}$
B: $(0,3) \mathrm{m}$
C: $(-3,6) m$
D: $(3,6) \mathrm{m}$
E: $(3,3) \mathrm{m}$
F: $(6,6) \mathrm{m}$


| Greatest |  |
| :---: | :---: |

Or, the -5 C charge would have the same electric potential energy at all of these points. $\qquad$ Please carefully explain your reasoning.

How sure were you of your ranking? (circle one)

Sure
5

6
4

[^0]
[^0]:    ${ }^{155}$ C. Hieggelke

