# **CHAPTER 18: MIRRORS AND LENSES**

#### **PLANE MIRROR:** a mirror with a flat surface

- ⇒ Plane mirrors create virtual images
  - Point from which light rays appear to diverge without actually doing so.





d<sub>o</sub> = object distance
 d<sub>i</sub> = image distance
 h<sub>o</sub> = object height
 h<sub>i</sub> = image height

\* The image formed by a plane mirror appears to be at a distance behind the mirror that is equal to the distance of the object in front of the mirror.

#### **MAGNIFICATION**

$$m = \frac{imageheight}{objectheight} = \frac{h_i}{h_o}$$

## SPHERICAL MIRRORS

**CONVERGING MIRROR:** A mirror where parallel rays will intersect at a common point (focal point) upon reflection (Concave Mirror)

**DIVERGING MIRROR:** A mirror where parallel rays will diverge upon reflection, as though the reflected rays came from a focal point behind the mirrors (Convex Mirror)

## **RAY DIAGRAMS**

- ⇒ A **PARALLEL RAY** is a ray that is incident along a path parallel to the optic axis and is reflected through the focal point.
- ⇒ A **CHIEF RAY** or radial ray is a ray that is incident through the center of curvature (C). Since it is incident normal to the mirror's surface, this ray is reflected back along its incident path, through C.
- ⇒ A **FOCAL RAY** is a ray that passes through the focal point and is reflected parallel to the optic axis.



parallel ray
chief ray
focal ray
C - Center of Curvature
F - Focal Point



## **EQUATIONS**

#### SPHERICAL MIRROR EQUATION

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

d<sub>o</sub> = Object distanced<sub>i</sub> = Image distancef = Focal distance

$$\frac{1}{f} = \frac{2}{R} \quad \text{or} \quad f = \frac{R}{2}$$

R = Radius of Curvature

### $\Rightarrow$ to find image distance:

$$d_i = \frac{d_o f}{d_o - f}$$

### ⇒ MAGNIFICATION FACTOR

$$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

Sign indicates orientation of Image

## **IMAGES FORMED WITH CONCAVE MIRRORS**

OBJECT BEYOND C PARALLEL RAY FOCALRAY

**Image** 

- · Real
- · Inverted
- · Smaller

 $d_o > d_i$ 

 $h_o > h_i \quad \therefore m < 1$ 

DOJECT AT C



**Image** 

- ·Real
- ·Inverted
- · Same Size

 $d_0 = d_i$ 

 $h_o = h_i$   $\therefore m = 1$ 

OBJECT BETWEEN C-F



**Image** 

- ·Real
- ·Inverted
- ·Larger

 $d_o < d_i$ 

 $h_o < h_i \therefore m > 1$ 

OBJECT WITHIN F



**Image** 

- Virtual
- · Erect
- ·Larger

 $d_o < d_i$ 

 $h_o < h_i \therefore m > 1$ 

<sup>\*</sup> When object is at F – No image is created.

## SIGNS IN EQUATIONS

- $\Rightarrow$  The focal length f (or R) is positive for concave mirrors and negative for convex mirrors.
- $\Rightarrow$  The object distance  $d_o$  is always positive.
- $\Rightarrow$  The image distance  $d_i$  is positive for a real image (same side of mirror as object) and negative for a virtual image (formed behind the mirror).
- $\Rightarrow$  The magnification  $\,^{M}$  is positive for an upright image and negative for an inverted image.