Name _

+

++

++

++

+

Date _____ Period_

Electric Fields - Problem Set 1

- 1. A positive test charge of 6.5×10^{-6} C experiences a force of 4.5×10^{-5} N. What is the magnitude of the electric field intensity?
- 2. A charge experiences a force of 3.0×10^{-3} N in an electric field of intensity 2.0 N/C. What is the magnitude of the charge?

- 4. A potential difference of 0.90 V exists from one side to other of a cell membrane that is 5.0×10^{-9} m thick. What is the electric field across the membrane?
- 5. A spark will jump between you and another person if the electric field exceeds 4.0 x 10⁶ V/m. You shuffle across a rug and a spark jumps when you put your finger 0.15 cm from another person's arm. Calculate the potential difference between your body and the other person's arm.

6. An oil drop carries a charge of three electrons and is balanced in a field of intensity 5.0×10^4 N/C. If the charge on the electron is 1.6×10^{-19} C, what is the weight of the oil drop?

7. An oil drop weighs 5.8 \times 10⁻¹⁴ N. It is suspended in an electric field intensity of 6.0 \times 10⁴ N/C.

a. What is the charge on the drop?

b. If the particle is negative, how many excess electrons does it carry?

8. It takes 5.5×10^{-17} J of work to raise the potential of a charge of 3.2×10^{-6} C. What is the potential of this charge?

