AP	Ph	ysics	

Kinematics – Acceleration

Mr. McMullen

Name

Date _____ Period ____

Acceleration Practice Problem Set 1

Answer the following questions on a separate sheet of paper. Remember the steps in solving physics problems.

- 1. What is the acceleration of a racing car moving south if its velocity is increased uniformly from 44.0 m/s to 66.0 m/s over 11.0 seconds?
- 2. What is the acceleration of a racing car moving south if its velocity is increased uniformly from 66.0 m/s to 44.0 m/s over 11.0 seconds?
- A train moving west at a velocity of 15.0 m/s is accelerated uniformly to 17.0 m/s in 12.0 seconds. What is the train's acceleration?
- 4. In a vacuum tube, an electrons velocity is increased by 2.60×10^5 m/s during a time period of 6.5×10^{-7} seconds. Calculate the acceleration of the electron.
- 5. A car is uniformly accelerated at a rate of 1.20 m/s² for 12.0 seconds. If the original velocity of the car was 8.00 m/s, what is its final velocity?
- 6. A racecar traveling at 45.0 m/s is slowed uniformly at the rate of -1.50 m/s^2 for 10.0 seconds. What is its final velocity?

$$0 = \frac{v_2 - v_1}{t} = \frac{66.0 - 44.0 \text{m/s}}{11.0 \text{ s}} = 2.00 \text{ m/s}^2 \text{ Scoth}$$

(2) a =
$$\frac{\sqrt{2-\sqrt{1}}}{t}$$
 = $\frac{44.0 - 666.00015}{11.05}$ = $-2.00001/5^2 5007H$

3 a =
$$\frac{\sqrt{2-\sqrt{1}}}{t} = \frac{17.0 - 15.0 \, \text{m/s}}{12.0 \, \text{sec}} = 0.167 \, \text{m/s}^2 \, \text{WEST}$$

(1) a =
$$\frac{V_2 - V_1}{E} = \frac{2.60 \times 10^5 \text{m/s} - 0 \text{m/s}}{6.5 \times 10^{-7} \text{sec}} = 4.08 \times 10^{11} \text{m/s}^2$$